(3)

Example: find L.T. of
$$(2+3+)^2$$

Sol. $L \le (2+3+)^2 \le L \le 4+9+2+12+3$
 $= L \le 43+L \le 9+2 \le +L \le 12+3$ (using Linear Property
 $= 4.L \le 13+9L \le 23+12L \le 43$ (— do —)
 $= 4\times 1+9, \frac{2!}{5^2+1}+12 \frac{1}{5^2}$
 $= \frac{4}{5}+\frac{18}{5^3}+\frac{12}{5^2}$ Ars.

(Ex. find L.T. cos(at+b)

$$SOF: L \leq Cos(ad+b) \leq = L \leq Cosad \cdot Cosb - Sinat Sinb \leq$$

$$= Cosb. L \leq Cosad \leq - Sinb L \leq Sinad \leq Clinear Prop.$$

$$= Cosb. \leq - Sinb. \frac{a}{s^2+a^2}$$

$$= (s. Cosb - a Sinb)/(s^2+a^2) Ans.$$

Ex find to L.T. of. cosh at.

Sol.
$$L\{cosh^2at\} = L\{(coshat)^2\} = L\{(e^{t}+e^{t})^2\}$$

 $= L\{\frac{1}{4}\{e^{2t}+e^{2t}+2\}\}$
 $= \frac{1}{4}L\{e^{2t}\} + \frac{1}{4}L\{e^{2t}\} + \frac{1}{4}L\{i\}$
 $= \frac{1}{4}\frac{1}{5-2} + \frac{1}{4}\frac{1}{5+2} + \frac{1}{2}\frac{1}{5}$
 $= \frac{s(s+2)+s(s-2)+2(s-2)(s+2)}{4s(s^2-4)} = \frac{4s^2-8}{4s(s^2-4)} = \frac{s^2-2}{s(s^2-4)}$

Ex find inverse Laplace Transform of
$$\frac{3}{5+5}$$

$$\frac{50!}{5!} \cdot \frac{7}{5!} \cdot \frac{3}{5+5} \cdot \frac{3}{5} = 3 \cdot \frac{7}{5!} \cdot \frac{7}{5+5} \cdot \frac{3}{5+5} \cdot \frac{7}{5+5} \cdot \frac{$$

Ex Find inverse Laplace Transform of
$$\frac{S+3}{(S-1)(S+2)}$$

Sol. Using Partial Fraction, we can write $\frac{S+3}{(S-1)(S+2)} = \frac{A}{S-1} + \frac{B}{S+2}$

$$S+3 = A(S+2) + B(S-1)$$

$$Pud S=1 \qquad 4 = A \cdot 3 + 0 \Rightarrow A = \frac{4}{3}$$

$$Pud S=-2 \qquad 1 = 0 + B(-3) \Rightarrow B = -\frac{1}{3}$$

$$\therefore \frac{S+3}{(S-1)(S+2)} = \frac{(4/3)}{S-1} + \frac{(-1/3)}{S+2}$$

$$-\frac{1}{2}\left\{\frac{S+3}{(S-1)(S+2)}\right\} = \frac{1}{2}\left\{\frac{(4/3)}{S-1}\right\} + \frac{1}{2}\left\{\frac{(-1/3)}{S+2}\right\}$$

$$= \frac{4}{3}\frac{1}{2}\left\{\frac{1}{S-1}\right\} - \frac{1}{3}\frac{1}{2}\left\{\frac{1}{S+2}\right\}$$

$$= \frac{4}{3}e^{t} - \frac{1}{3}e^{t}$$

 E_X . Find coplace Transform of $f(t) = t^{5/2}$ given that $f'(\frac{1}{2}) = dT$.

Sol. We know that $L\xi t^{\alpha}\xi = \frac{\Gamma(\alpha+1)}{S^{\alpha+1}}$, $\alpha > 0$

 $\frac{1}{5}$ $\frac{1}$

 $=\frac{\sum \Gamma(\sum)}{S^{7/2}}=\frac{\sum \Gamma(\frac{3}{2}+1)}{S^{7/2}}\left[USIN \Gamma(\alpha+1)=\alpha\Gamma(\alpha)\right]$

 $=\frac{5.3.7(3)}{5.7/2}=\frac{5.3.7(1+1)}{5.7/2}$

 $=\frac{5.3}{2.12}\frac{1.\Gamma(\frac{1}{2})}{5^{7/2}}=\frac{5.3.1.\Gamma(\frac{1}{2})}{5^{7/2}}$

= 15. dr . - As

Ex Show that \(\big(\text{mti)} T = st \if (t) dt = e^{-nsT} \int e^{-st} f(t) dt,
\)

when nis an integer, when f(t) is a periodic function of period T.

Solution: Since given function f(t) is a periodic function of period T, therefore let t = U + T, when $t = T \Rightarrow U = 0$

Scanned by CamScanner

 $t = (n+1)T \implies 4 = T$

int
$$e^{\text{st}} = \int_{0}^{\infty} e^{\text{s(u+nt)}} du$$

$$= \int_{0}^{\infty} e^{\text{su}} = \int_{0}^{\infty} e^{\text{s(u+nt)}} du$$

$$= \int_{0}^{\infty} e^{\text{su}} e^{-\text{snt}} \int_{0}^{\infty} e^{\text{su}} f(u) du$$

$$= e^{\text{snt}} \int_{0}^{\infty} e^{\text{su}} f(u) du$$

$$= e^{\text{snt}} \int_{0}^{\infty} e^{\text{st}} f(t) dt \quad \text{Ans}$$

Assignment

(Ams,
$$6s^2+24-s^4$$
) $\frac{5^3(s^2+4)}{5^3(s^2+4)}$

$$\frac{-2t+5}{2}$$

[Ans.
$$e^{5}$$

$$\left[\begin{array}{cc} Ans. & \frac{2s}{(s^2+1)^2} \end{array}\right]$$

$$\left(Ans. \ \, \frac{1}{5} + \frac{2}{5^2 + 4} \right)$$

5.
$$f(t) = \begin{cases} 2 & 0 < t < 3 \\ 0 & t \ge 3 \end{cases}$$

$$\int_{S} Ans = 2(1-e^{3S})$$

6.
$$f(t) = \int_{-\infty}^{\infty} 0 \quad 0 \leq t < \pi$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} t \cdot \nabla u \cdot du = 0$$

$$\int A_{n} \times \frac{5}{s^{2}+2s} + \frac{s}{s^{2}+16}$$

$$\begin{cases} Ans. & \frac{1}{S(s+2)} \end{cases}$$

Ex find inverse Laplace Transform of following.

$$1. \ \frac{2}{s^3} + \frac{6}{s^2} - \frac{5}{s}$$

2.
$$\frac{3}{S^2 + 2S}$$

$$\int Ans. 3(1-e^{-2t})$$

3.
$$\frac{S^2 + 2S + 5}{(S-1)(S-2)(S-3)}$$

Ex If
$$L\xi f(t)3 = f(s)$$
 then Show that $L\xi f(at)3 = \frac{1}{2} \cdot f(\frac{\xi}{a})$.

$$L\left\{e^{\text{cusbt}}\right\} = \frac{S-9}{(S-a)^2+b^2}$$

$$L \leq e^{\text{at}} \leq \int_{(S-a)^2 + b^2}^{at} dt$$

(I)captace Transform to solve differential equations: We can use Laplace Transform to reduce differential equation to an algebraic equation which will be simpler than actual solving the differential equation directly in many cases daplace Transform can also be used to solve initial value problem Before proceeding into differential equations we need formula to find the deplace Transferm of derivative. daplace Transform of Derivatives > \rightarrow If L(f(t)) = F(s), then L(f(t)) = SL(f(t)) - f(s) = SF(s) - f(s)By definition L(f(t)) = fe-st f(t)dl = [e-st f(t)] + S [e-st f(t) (Integration by L(f(t)) = -f(0) + SL(f(t))[(f'(t)) = -f(c) + SF(S) [(loing -0] Since we are going to be dealing with higher order differential equation, so we will find daplace transform of higher order desiratives. Using (9) L(f"(t)) = SL(f'(t)) - f'(0) = S[SL(f(t)) - f(0)] - f'(0) $L(f''(t)) = S^2 L(f(t)) - Sf(0) - f'(0)$ L(f''(t)) = SL(f''(t)) - f''(0) $= S[S^2L(f(t)) - Sf(0) - f'(0)] - f''(0)$ $L(f''(t)) = S^3L(f(t)) - S^2f(0) - Sf'(0) - f''(0)] - (1)$ (1) L(fn(t)) = sn L(f(t)) - sn-1 f(0) - sn-2 f(0) - --f"(o) where fort) denotes the nth order derivative

Remark. Itel f(t) be function 8t f(0) = 0

Then woring (1) Lef(t) = SF(S)

$$\frac{1}{1}(SF(S)) = f(t) = \frac{1}{1} L^{-1}(F(S)) - (2)$$

Eg find $L^{-1}(SF(S)) = f(t) = \frac{1}{1} L^{-1}(F(S))$

$$f(t) = \frac{1}{1} L^{-1}(SF(S)) = \frac{1}{1} L^{-1}(SF(S))$$

$$f(t) = L^{-1}(SF(S)) = \frac{1}{1} L^{-1}(SF(S))$$

$$L^{-1}(SF(S)) = \frac{1}{1} L^{-1}(SF(S)) = \frac{1}{1} L^{-1}(SF(S))$$

Let $F(S) = \frac{1}{1} L^{-1}(SF(S)) = \frac{1}{1} L^{-1}(SF(S))$

$$f(t) = L^{-1}\left[\frac{1}{1} L^{-1}(SF(S))\right] = e^{-L} e^{-2L}$$
Also $f(0) = 0$

$$L^{-1}\left[SF(S)\right] = L^{-1}\left[\frac{S}{1} L^{-1}(SF(S))\right] = f'(t)$$

$$L^{-1}\left[\frac{S}{1} L^{-1}(SF(S))\right] = e^{-L} e^{-2L}$$
Solve the initial value problem

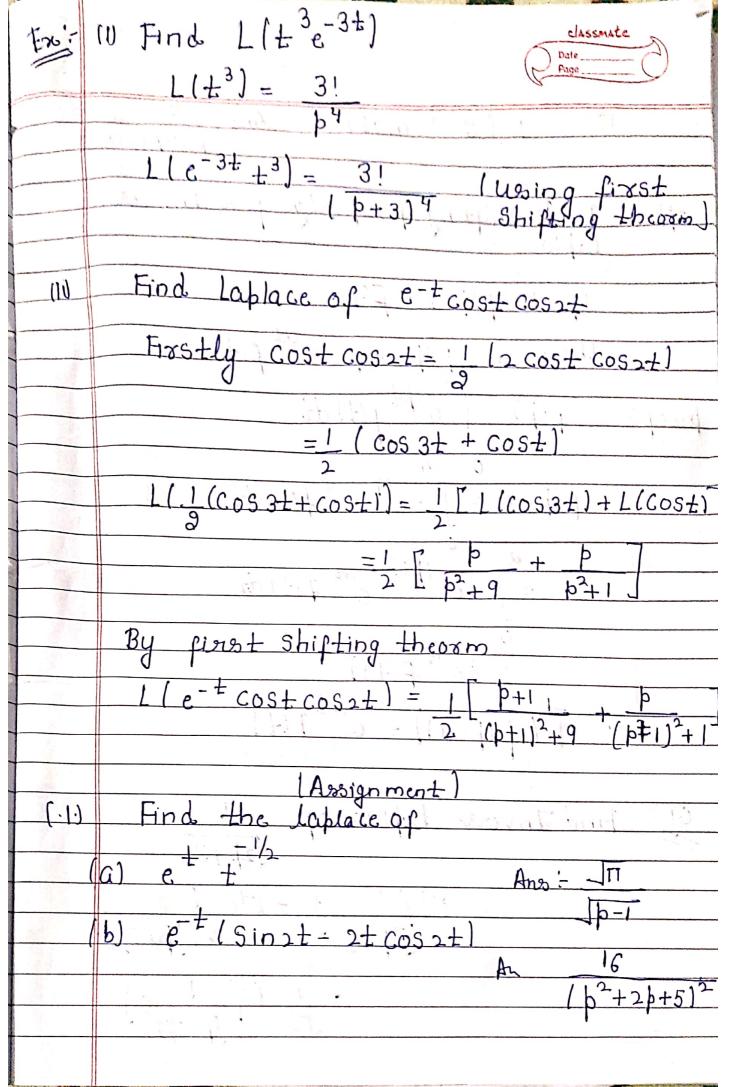
$$y'' + 4y = 0, \quad y(0) = 1, \quad y'(0) = 6$$
Solution. The first step to solve this initial value problem is to take transform of each term in the differential equation.

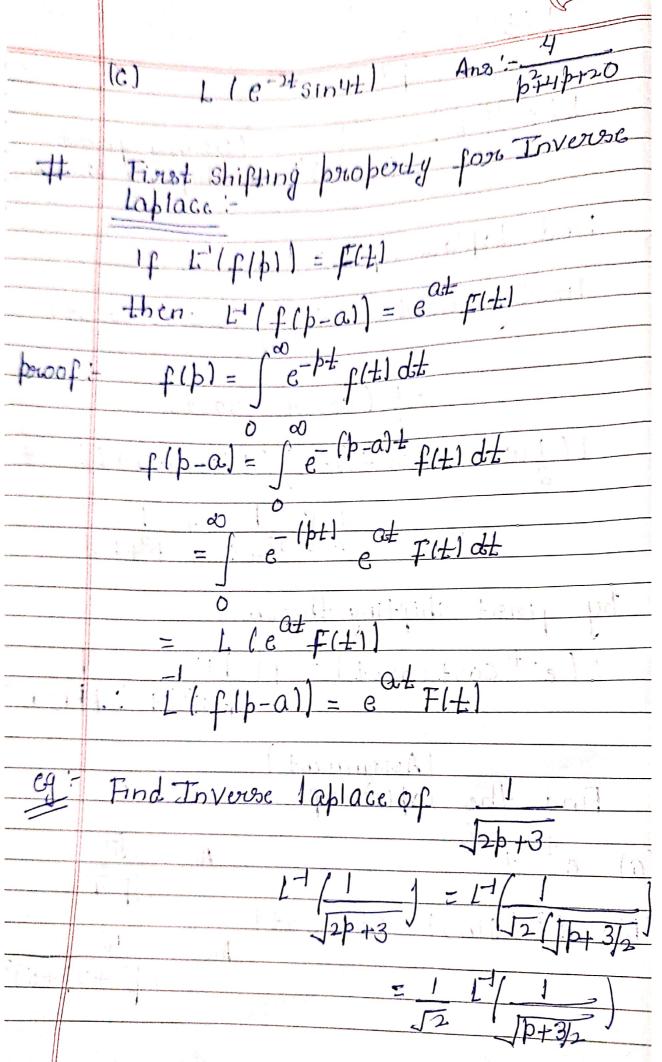
L(y'') + L(4y) = L(0)L(y") + 4L(y) = L(0) [Since Loplace Es linear] Moing formula for Laplace transform of function and its derivatives, we get [S²Y(s) - sy(o) - y'(o)] + 4 Y(s) = 0 Here L(y(t)) = Y(s) and L'(Y(s)) = y(t) But the initial conditions and collul all terms having Y(s) we get (52+4) Y(s) = 3+6 Y(s) = S+6 = 5 + 6 + 544 To get solution, take inverse daplace on both sides $L'(Y(s)) = L'(\frac{s}{s^{2}+4}) + \frac{L'(\frac{6}{s^{2}+4})}{s^{2}+4}$ y(t) = cos2t + 3 sin2t Example - Solve y"+ 5y'+4y = e3t, y(0) = 0, y'(0) = 3 Solution , Jake Laplace Transform on both sides $L(y'') + 5L(y') + 4L(y) = L(e^{3t})$ $[S^2Y(s) - Sy(0) - y'(0)] + 5[SY(s) - y(0)] + 4Y(s) = \frac{1}{s-3}$ $(s^2+5s+4)Y(s) = \frac{1}{5-3} + 3$ Y(s) = 1 $(s-3)(s^2+5s+4) + 3$ (s^2+5s+4) $Y(s) = \frac{3s-8}{(s-3)(s+4)(s+1)}$ Y(s) = A + B + C S+4 + S+1 On solving we get $A = \frac{1}{28}$, $B = -\frac{20}{21}$, $C = \frac{11}{12}$.' $Y(s) = \frac{1}{28(s-3)} - \frac{20}{21(s+4)} + \frac{11}{12(s+1)}$

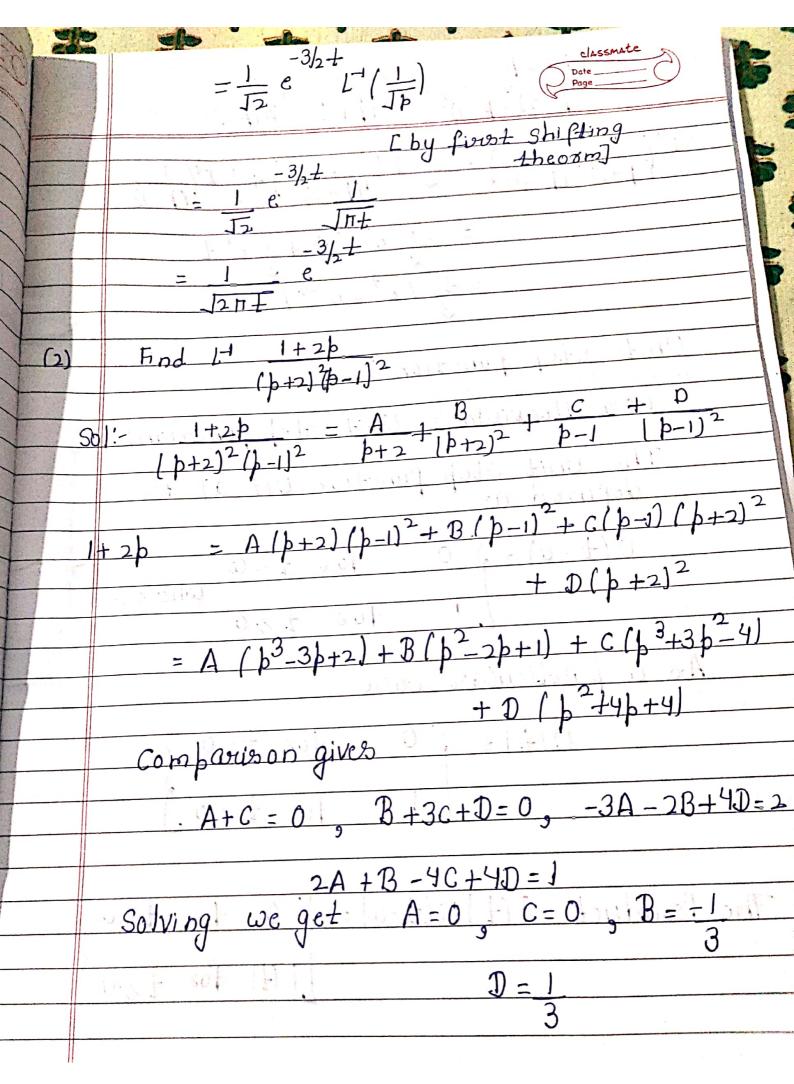
Taking inverse daplace Transform on both sides, reget $L'(Y(S)) = L'(\frac{1}{28(S-2)}) - \frac{1}{2}(\frac{20}{21(S+4)}) + L'(\frac{11}{12(S+1)})$ y(t) = k 1 e3t - 20e-41 + 11e-t \Rightarrow Solve y'' - 10y' + 9y = 5t, y(0) = -1, y'(0) = 2Solution- L(y'') - 10L(y') + 9L(y) = 5L(t)Solution $g^2Y(s) - sy(0) - y'(0) - 10(sY(s) - y(0)) + 9Y(s) = \frac{5}{62}$ $(S^2 - 10S + 9) Y(S) + S - 12 = 5$ Y(s) = 5 + 12-5 $8^{2}(s^{2}-10s+9) (s^{2}-10s+9)$ $Y(s) = \underbrace{5 + 12s^2 - s^3}_{S^2(S^2 - los + 9)} = \underbrace{5 + 12s^2 - s^3}_{S^2(S - 9)(S + 1)}$ $\gamma(s) = \frac{A}{3} + \frac{B}{3^2} + \frac{C}{5-9} + \frac{D}{5-1}$ On solving, we get A = 50, B = 5, C= 31, D= 2 $Y(S) = \frac{50/81}{9} + \frac{5/9}{5^2} + \frac{31/81}{5-9} - \frac{2}{5-1}$ Taking inverse laplace Transform on both sides (Y(s)) = 50 ((+) + 5 ((+) + 31 ((+))-26. $y(t) = \frac{50}{81} + \frac{5}{9}t + \frac{31}{81}e^{9t} - 2e^{t}$ Laplace Transform of Integral If L(fit) = F(s), then L(ff(k) dk) - f(s)=1(f(b)) Let q(t) = sfanck. $\phi'(t) = f(t)$

$$\begin{array}{lll} & : & l(f(t)) = sl(q(t)) & [:: \phi(0) = 0] \\ & : & l(\phi(t)) = ll(f(t)) \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

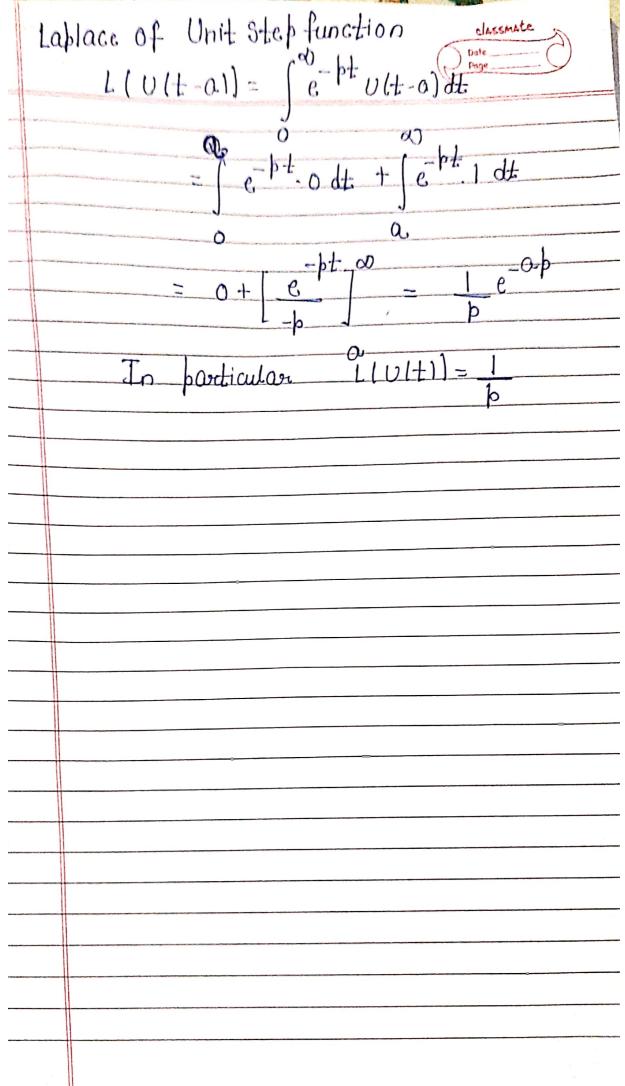
Hong (1)
$$l'(\frac{f(s)}{s}) = l'(\frac{\omega}{s(s^2+\omega^2)}) = \int_{sinwk}^{\infty} \sin(\omega k) dk$$

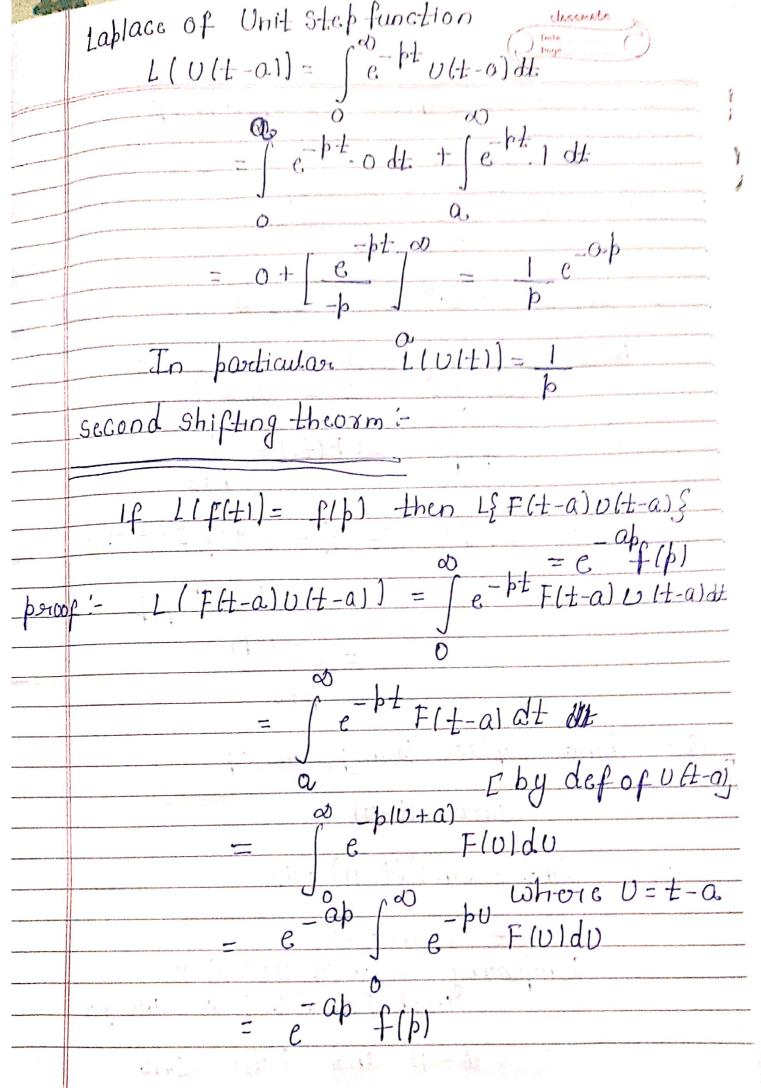

$$= \int_{cos}^{\infty} \cos(k) - \cos(\omega k) dk$$


$$= \int_{cos}^{\infty} (\frac{1}{s^2}\cos(k)) = \int_{cos}^{\infty} l(1-\cos(\omega k)) dk$$


$$= \int_{cos}^{\infty} \left(\frac{1}{s^2}\cos(k)\right) = \int_{cos}^{\infty} l(1-\cos(\omega k)) dk$$

$$= \int_{cos}$$


First shifting the asum L(f(+1) = f(b) +bco Proof: $l(e^{at}f(t)) = f(b-a)$ $e^{at}f(t) = (e^{at}f(t)dt)$ 0 (-()-a)t (e) f(t) dt = f(p-a apply this property we get 11) (2) (b-a)2+b2 (b-a12-b2 $le^{at} coshbt = b-a$ $(b-a)^2-b^2$



	$\frac{1+2b}{(b+2)^2(b-1)^2} = \frac{-1}{3(b+2)^2} + \frac{1}{3(b-1)^2}$	
	$\frac{ +2 }{ +2 } \frac{1}{(-1)^2} = -\frac{1}{3} \frac{1}{1} \frac{1}{(+2)^2} + \frac{1}{3} \frac{\Gamma(\frac{1}{1})}{(+2)^2}$	
	$= -\frac{1}{3}e^{-2t} + \frac{1}{3}e^{t} +$	
U	nit step function:	
	(or Heaviside's Unit step function)	
	The Unit Step function Ult-a) 15 defined as	
	$U(\pm -a) = SO \qquad \text{for } \pm < G$ where $a7/0$	
As a particular case		
	U(+1= 50 fox ±<0.	
The Po	product F(t)U(t-a) = So for t <a< td=""></a<>	
	[F(H for tra)	

Find the laplace transforms of e-3+ 1)(+-a) Now comparing with F(t-a) U(t-a) -3-t U(t-a) U(f/b) = L(F(±1) e-3+ 11(+-21) = e - 6 e - 2 p f (b) Find Laplace transforms of Sint Ult-17) Sint = Sin [(t-n) +n] Sol :comparing $-\sin(t-\pi)$ $U(t-\pi)$ we get a = H and F(+) = - Sin to Scanned with CamScanner

$$f(b) = L(f(t)) = -\frac{1}{b^{2}+1}$$

$$L(sint o(t+n)) = L(-sin(t+n)) o(t+n)$$

$$= c^{-nb} f(b)$$

$$= a \qquad [by second shifting]$$

$$p^{2}+1$$

$$Sacond shifting fore Envoyer Laplace = [f(b)] = F(t) = f(b)$$

$$L^{-1}(e^{-ab}f(b)) = G(t)$$

$$whore G(t) = F(t+a) + 7a f$$

$$= c \qquad b+8$$

$$p^{2}+4p+5$$

$$L^{-1}(p+2)+6 = L^{-1}(p+2)^{2}+1 + 6l^{-1}(p+2)^{2}+1$$

$$= e^{-2t} L^{-1}(\frac{b}{p^{2}+1}) + 6e^{-2t} L^{-1}(\frac{b}{p^{2}+1})$$

Q:- evaluate L-1/e-2/) $L^{-1}\left(\frac{1}{b^{2}}\right) = \pm = \pm (\pm 1)$ Sol: $L^{-1}\left(e^{-2b}\right) = \int_{0}^{2} \frac{1}{b^{2}} = \int_{0}^{2} \frac{1}{1+2} = \int_{0}^{2} \frac{1}{1+2}$ (+-2) U(+-2) 1 = GOS H+ = Sin 11+ $\frac{-b/2}{|b|e|} - \cos \pi \left(\frac{t-1}{2}\right) \nu \left(\frac{t-1}{2}\right)$ $= \frac{b^2 + \pi^2}{|b|^2 + \pi^2}$ $= \frac{by Second Shifting}{|thm|}$ = Sint+ U(+-1) $\frac{1-1}{p^2+\Pi^2} = \frac{1-1}{2}$ - Sintt U(+-1) $L^{-1}(\frac{be^{-b/2}+\pi e^{-b}}{h^2 + \pi^2}) = Sint + \left[\frac{U(t-1)-U(t-1)}{2}\right]$ Scanned with CamScanner

Probability Distaibution Muti Let an experiment be seperated under essentially the same Condition
and let it sesult in any one of the
Several possible outcomes. Then the
experiment is called a total and the
possible outcomes are known as events
or cases Tossing of a coin is a total and the turning up of tail is an event. Ci) The total number of Exhaustive Events : Rnown as exhaustive events or exhausti Cases. If A, A, A, --, An aris exhustive events then A, UA, UA, UA, U--. UA, =S, the same sbace. for eg: In tossing a coin, there are two exhaustives cases head and toail. Favourable events: The cases which entail the happening of an event are said to be favourable to the event. It is the total number of possible outcomes For eg: In a throw of two dices the number of cases favourable to getting a sum 6 ls 5 viz. (1,5), (5,1), (2,4) (4,2), (3,3).

	Mutually exclusive events: - Events dassmate Said
	to be mutually exclusive as it a faille is
	to be mutually exclusive on incompatible if the happening of any one of them precludes the happening of all othersice If no two one
-	the happening of all othersice if no two or
	mutually exclusive events then A, DA, n DA, = 0
	Independent and dependent Events:
	-ing or mon-rappening of any one does not
	-ing or non-happening of any one does not depend by the happening one non-happening of any other. Otherwise they are said to be
	dependent.
	Random Experiment:
	Occurrences which can
	be repeated a number of times essentially
	under the same conditions and whose visuat
	be repeated a number of times essentially under the same conditions and whose result cannot be predicated before hand are known
	as vandom experiments.
	For example, volling a die tossing a coin taking out balls from an win.
	Taking out batter from winder.
	Sample Space: Out of the Several possil
	of the owner posting
	Outcomes of a vandom experiment. One an
	Only one can take place in a toail. The
	set of all these possible outcomes is a
	the sample shace por the barticula
	the Sample space for the particular experiment and is denoted by S. For example, if a Goin is tossed the
	Fox example if a coin is tossed to
	, the same of the

			cont
	possible outcomes are H (Head)	and Illay	
	bossible outcomes are		A C
	possible outcomes are in Thus $S = 2H_0 TS$		can
		- C the	1-e Fox
	Sample point: The elements	27 3	Tn
	Sample point The elements Sample 9 are Galled 3 amble 1 Sample 9 are Galled 3 amble 1	points.	
	Sample 9 are Galled gamble of Fore example if a coin is tooks. H and T denote Head and The respectively then $S = SH$, TS The sample boints are H and T.	ed will-	_Dis
	Foge example 4 to e Head an	d 1000 -	
	Hand I danotes S=SH, TS In		\V0
	sespectively then session to Sample points are Hand To		V
	Sample pour	The sample	1
_ + - 1; -	Event: Every Subset of So	LIS Jurispia	
	Event = 100 gd an event	21	
	SCC ILGERT LOUI	evens	
	Called a certain event	ala a on Pulsal	
	Also die the nille och	1 Caro	
	and and an I long the continue	P	
-	110 of C Theo P 15 (3(1)/15)		150
	Every elementsy event conta Sample	ins only One	
	Sample	a Chillian	
		ret.	
	Random Variable:	Aric Acido:	
		V -L	
	If the numerical Values	assumedh	(1
	a Variable are the resi	IL Of hame	9
	Chance factors so that	0 h 0 2 1 2 1 2 2	
	Value Canant la Passall	r pwticulos	<u> </u>
	Value cannot be exactly	predicte of	
	in advance the varid	ble 1s then	
	Called a random Vario	ble	

	continous Random Variable :- classmate
	Date
	A Continous random variable is one which
	can assume any value within an interval i-e all values of a continous scale. For eg: weights (in kg) of a group of Individuals.
	i-e all values of a continous scale
	For eg: weights (in Kg) of a percul of
	Individuals.
	Discrete Random Variable:
	A 010 1
	Variable is one which can assume only isolated
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	the number of heads in 4 tosses of a Goin
	12 to discrete gandom Variable a's it
	Cannot assume Value Other than 0,1,2,3,4
	Discrete Peropobility Distribution
	let a pandom X assume values x, x, x, x,, x,
	(y) + D
-	where P(X=x)=b, zo fox each x.
	where $P(X = x) = b$, y_0 for each x_1 . and $b_1 + b_2 + + b_n = \sum_{i=1}^{n} b_i = 1$ Then
	J=1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	χ : α_1 α_2 α_3 α_n
	0/ 1/ D D D
	P(X): P, P2 P3 Pn
	is called discrete probability distribution for X and it Spells out how a total probability of I is distributed over Several Values of the random variable.
	X and it Spells out how a total probabilize
	of 1 is distributed over Several Values
	of the random variable.
	Mean and Vaviance:

For discrete distribution: Mean = 16 = Ep, x, $\leq |x_i|^2 - \mu$ Variance = = == continous distribution: For x f(x) doe Mean = (x-112 f(x) dx Variance = it is discussed at an in it is